Optimization of Surface Roughness of Aisi 304 Austenitic Stainless Steel in Dry Turning Operation Using Taguchi Design Method

نویسندگان

  • D. PHILIP SELVARAJ
  • P. CHANDRAMOHAN
  • D. P. Selvaraj
  • P. Chandramohan
چکیده

The present work is concentrated with the dry turning of AISI 304 Austenitic Stainless Steel (ASS). This paper presents the influence of cutting parameters like cutting speed, feed rate and depth of cut on the surface roughness of austenitic stainless steel during dry turning. A plan of experiments based on Taguchi’s technique has been used to acquire the data. An orthogonal array, the signal to noise (S/N) ratio and the analysis of variance (ANOVA) are employed to investigate the cutting characteristics of AISI 304 austenitic stainless steel bars using TiC and TiCN coated tungsten carbide cutting tool. Finally the confirmation tests that have been carried out to compare the predicted values with the experimental values confirm its effectiveness in the analysis of surface roughness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Gray Relational Analysis and Taguchi Technique in Solving Multi-objective Problems for Turning Operation of Austenitic Stainless Steel

In this study, the application of gray relational analysis (GRA) and Taguchi method in multi-criteria process parameters selection of turning operation has been investigated. The process responses under study are material removal rate (MRR) and surface roughness (SR); in turn, the input parameters include cutting speed, feed rate, depth of cut and nose radius of the cutting tool. The proposed a...

متن کامل

Design optimization of cutting parameters for turning of AISI 304 austenitic stainless steel using Taguchi method

In the present work Taguchi method is used to optimize cutting parameters during dry turning of AISI 304 austenitic stainless steel with AlTiCrN coated tool. The coating was deposited on fine-grained K-grade (ISO K-20) cemented carbide cutting insert using physical vapor deposition (PVD) technique. The turning parameters evaluated are cutting speed of 200 and 260 m/min, feed rate of 0.20 and 0....

متن کامل

Prediction Model for CNC Turning on AISI316 with Single and Multilayered Cutting tool Using Box Behnken Design (RESEARCH NOTE)

Austenitic stainless steels (AISI316) are used for many commercial and industrial applications for their excellent corrosive resistance. AISI316 is generally difficult to machine material due to their high strength and high work hardening tendency. Tool wear (TW) and surface roughness (SR) are broadly considered the most challenging phases causing poor quality in machining. Optimization of cutt...

متن کامل

Optimization of Process Parameters in Turning of AISI 8620 Steel Using Taguchi and Grey Taguchi Analysis

The aim of this research is to investigate the optimization of cutting parameters (cutting speed, feed rate and depth of cut) for surface roughness and metal removal rate in turning of AISI 8620 steel using coated carbide insert. Experiments have been carried out based on Taguchi L9 standard orthogonal array design with three process parameters namely cutting speed, feed rate and depth of cut f...

متن کامل

Prediction and Optimization of Cylindrical Grinding Parameters for Surface Roughness Using Taguchi Method

Recently 304 stainless steel finds many applications like Automotive, Aerospace, Nuclear, Chemical and Cryogenics. The cylindrical grinding parameters on 304 stainless steel are conducted using Taguchi design of experiments of L9 orthogonal array was selected with 3 levels with 3 factors and output parameter of Surface Roughness is measured. The quality of the surface describes the relationship...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010